Exercise 7.2.12

The motion of a body falling in a resisting medium may be described by

$$
m \frac{d v}{d t}=m g-b v
$$

when the retarding force is proportional to the velocity, v. Find the velocity. Evaluate the constant of integration by demanding that $v(0)=0$.

Solution

Method I: Separation of Variables

Solve the ODE by separating variables. Divide both sides by $m(m g-b v)$ and bring $d t$ to the right side.

$$
\frac{d v}{m g-b v}=\frac{d t}{m}
$$

Integrate both sides.

$$
\int^{v} \frac{d r}{m g-b r}=\int^{t} \frac{d s}{m}+C_{1}
$$

Evaluate the integral on the right and make the substitution $u=m g-b r(d u=-b d r)$ on the left.

$$
\begin{aligned}
\int^{m g-b v} \frac{1}{u}\left(\frac{d u}{-b}\right) & =\frac{t}{m}+C_{1} \\
-\frac{1}{b} \int^{m g-b v} \frac{d u}{u} & =\frac{t}{m}+C_{1} \\
-\left.\frac{1}{b} \ln |u|\right|^{m g-b v} & =\frac{t}{m}+C_{1} \\
-\frac{1}{b} \ln |m g-b v| & =\frac{t}{m}+C_{1}
\end{aligned}
$$

Multiply both sides by $-b$, using a new constant C_{2} for $-b C_{1}$.

$$
\ln |m g-b v|=-\frac{b t}{m}+C_{2}
$$

Exponentiate both sides.

$$
\begin{aligned}
|m g-b v| & =e^{-b t / m+C_{2}} \\
& =e^{-b t / m} e^{C_{2}}
\end{aligned}
$$

Remove the absolute value sign on the left by placing \pm on the right.

$$
m g-b v= \pm e^{C_{2}} e^{-b t / m}
$$

Use a new constant C_{3} for $\pm e^{C_{2}}$.

$$
\begin{equation*}
m g-b v=C_{3} e^{-b t / m} \tag{1}
\end{equation*}
$$

Now apply the initial condition $v(0)=0$ to determine C_{3}.

$$
\begin{gathered}
m g-b(0)=C_{3} e^{-b(0) / m} \\
m g=C_{3}
\end{gathered}
$$

Substitute this formula for C_{3} into equation (1).

$$
m g-b v=m g e^{-b t / m}
$$

Solve for v.

$$
\begin{aligned}
b v & =m g-m g e^{-b t / m} \\
& =m g\left(1-e^{-b t / m}\right)
\end{aligned}
$$

Therefore,

$$
v(t)=\frac{m g}{b}\left(1-e^{-b t / m}\right) .
$$

Method II: Integrating Factor

Here the ODE will be solved by multiplying both sides by an integrating factor.

$$
m \frac{d v}{d t}=m g-b v
$$

Bring $b v$ to the left side.

$$
m \frac{d v}{d t}+b v=m g
$$

Divide both sides by m so that the coefficient of $d v / d t$ is 1 .

$$
\frac{d v}{d t}+\frac{b}{m} v=g
$$

The integrating factor to be used is

$$
I=\exp \left(\int^{t} \frac{b}{m} d s\right)=e^{b t / m}
$$

Multiply both sides of the previous equation by I.

$$
e^{b t / m} \frac{d v}{d t}+\frac{b}{m} e^{b t / m} v=g e^{b t / m}
$$

The left side can now be written as a derivative by the product rule.

$$
\frac{d}{d t}\left(e^{b t / m} v\right)=g e^{b t / m}
$$

Integrate both sides with respect to t.

$$
e^{b t / m} v=\frac{m g}{b} e^{b t / m}+C_{4}
$$

Divide both sides by $e^{b t / m}$.

$$
v(t)=\frac{m g}{b}+C_{4} e^{-b t / m}
$$

Apply the initial condition $v(0)=0$ to determine C_{4}.

$$
0=\frac{m g}{b}+C_{4} e^{-b(0) / m} \quad \rightarrow \quad C_{4}=-\frac{m g}{b}
$$

Therefore,

$$
\begin{aligned}
v(t) & =\frac{m g}{b}-\frac{m g}{b} e^{-b t / m} \\
& =\frac{m g}{b}\left(1-e^{-b t / m}\right) .
\end{aligned}
$$

